Monthly Mathematics Challenge Solutions - March 2016

1. The triangles and pentagons in the figure are all regular with sides of one unit of length. Show that the points A, B, and C are on a line and find the distance from A to C.

Solution: Refer to the annotated figure above for point labels.

claim 1: $\triangle IHC$ is congruent to $\triangle CFG$. Therefore, IC = CF. proof: IH = CG = CH = CG = 1

Since angles in a regular pentagon are equal, $\triangle CHG$ is equilateral. Thus $\angle IHC = \angle IHG - \angle CHG = \angle HGF - \angle HGC = \angle CGF$.

claim 2: $\triangle IBC$ is congruent to $\triangle CBF$. Therefore, $\angle IBC = \angle CBF = \frac{\angle IBF}{2} = 54^{\circ}$. proof: IC = CF = BI = BF = 1

Since $\triangle BEF$ is equilateral, $\angle EBF = 60^{\circ}$. Thus, $\angle AEB = \angle BED - \angle AED = 108^{\circ} - 60^{\circ} = 48^{\circ}$.

Since $\triangle ABE$ is isoceles, $\angle ABE = \frac{180^{\circ} - 48^{\circ}}{2} = 66^{\circ}$.

Combining these facts we find that $\angle ABE + \angle EBF + \angle FBC = 66^{\circ} + 60^{\circ} + 54^{\circ} = 180^{\circ}$. This shows that points A, B, and C lie on a line.

We will now use the law of sines to determine the distance from A to C.

$$\frac{AB}{\sin(48^\circ)} = \frac{1}{\sin(66^\circ)} \text{ implies that } AB = \frac{\sin(48^\circ)}{\sin(66^\circ)}$$
$$\frac{BC}{\sin(42^\circ)} = \frac{1}{\sin(54^\circ)} \text{ implies that } BC = \frac{\sin(42^\circ)}{\sin(54^\circ)}$$
Therefore, $AC = AB + BC = \frac{\sin(48^\circ)}{\sin(66^\circ)} + \frac{\sin(42^\circ)}{\sin(54^\circ)}.$

2. Find the remainder in the division of 3^{2012} by 11.

Solution: We will show that $2012 = 10 \pmod{11}$ and thus the remainder when 2012 is divided by 11 is 10. First note that

$$3^{2} \equiv 9 \equiv -2 \pmod{11}$$
$$3^{3} \equiv 5 \pmod{11}$$
$$3^{4} \equiv 15 \equiv 4 \pmod{11}$$
$$3^{5} \equiv 12 \equiv 1 \pmod{11}$$
$$3^{6} \equiv 25 \equiv 3 \pmod{11}$$

Thus

$$2012 = 2 \cdot 3^{6} + 2 \cdot 3^{5} + 2 \cdot 3^{3} + 3^{2} + 3 + 2$$

$$\equiv 6 + 2 + 10 - 2 - 8 - 9 \pmod{11}$$

$$\equiv -1 \pmod{11}$$

$$\equiv 10 \pmod{11}$$

3. Find the smallest number a such that $f(x) = \sin(x) - x + ax^3$ is an increasing function. Solution: The derivative of $f(x) = \sin(x) - x + ax^3$ is $f'(x) = \cos(x) - 1 + 3ax^2$. Thus, f(x) is increasing when $\cos(x) - 1 + 3ax^2 > 0$ or equivalently when

$$a > \frac{1 - \cos(x)}{3x^2}$$
$$= \frac{2\sin^2(x/2)}{12(x/2)^2}$$
$$= \left(\frac{1}{6}\right) \left(\frac{\sin(x/2)}{x/2}\right)^2$$

We will now show that we must have $a \ge 1/6$ to insure that f(x) is increasing by showing that $\max \left| \frac{\sin(x)}{x} \right| = 1$. If $x \notin [-1, 1]$, then $\left| \frac{\sin(x)}{x} \right| < 1$. If $x \in [-1, 1]$ and $x \neq 0$, then $|x| > |\sin(x)|$ and $\left| \frac{\sin(x)}{x} \right| < 1$. The limiting value of $\frac{\sin(x)}{x}$ as x tends to zero is 1. This establishes the fact that the smallest number a such that $f(x) = \sin(x) - x + ax^3$ is an increasing function is a = 1/6.

4. Let k be a natural number. Show that

$$gcd\left(\binom{n}{k},\binom{n+1}{k},\ldots,\binom{n+k}{k}\right) = 1$$

for any natural number $n \ge k$.

Solution: We will prove this result by induction on k. For k = 1, $\binom{n}{k} = n$ and $\binom{n+1}{k} = n+1$. The result follows, since gcd(n, n+1) = 1.

Let m < n be given and assume that the result holds for k = m. We will now show that the result holds for k = m + 1. By assumption,

$$gcd\left(\binom{n}{m}, \binom{n+1}{m}, \dots, \binom{n+m}{m}\right) = 1$$

Let $a_0 = \binom{n}{m+1}$, $a_1 = \binom{n+1}{m+1}$, ..., $a_{m+1} = \binom{n+m+1}{m+1}$, and let $d = \gcd(a_0, a_1, \ldots, a_{m+1})$. Note that we need to show that d = 1. By Pascal's identity we have,

$$\binom{b+1}{c+1} = \binom{b}{c+1} + \binom{b}{c}$$

Thus $a_1 = a_0 + \binom{n}{m}$, $a_2 = a_1 + \binom{n+1}{m}$, ..., $a_{m+1} = a_m + \binom{n+m}{m}$ and we see that d must divide each of $\binom{n}{m}$, $\binom{n+1}{m}$, ..., $\binom{n+m}{m}$. By assumption these terms have gcd = 1. Hence, we must have d = 1 and the result is established.

5. Let $z_1 = 1$ and $z_{n+1} = \frac{1}{2}(z_n + \frac{i}{z_n})$ for all $n \ge 1$ (where *i* is the imaginary unit). Show that $(z_n)_{n=1}^{\infty}$ converges and find its limit.

Solution:

Let $\alpha = 1 + \frac{i}{\sqrt{2}}$. Observe that $\alpha^2 = i$. Now define $w_n = \frac{z_n - \alpha}{z_n + \alpha}$ for all $n = 1, 2, \ldots$ Then

$$w_n^2 = \frac{z_n^2 - 2z_n\alpha + \alpha^2}{z_n^2 + 2z_n\alpha + \alpha^2} = \frac{\frac{1}{2}(z_n + \frac{i}{z_n}) - \alpha}{\frac{1}{2}(z_n + \frac{i}{z_n}) + \alpha} = \frac{z_{n+1} - \alpha}{z_{n+1} + \alpha} = w_{n+1}$$

for all $n = 1, 2, \ldots$ Hence, $w_n = w_1^{2^n}$ for all $n = 1, 2, \ldots$ Observe that

$$|w_1| = \left|\frac{2\sqrt{2}i}{4+2\sqrt{2}}\right| < 1.$$

Hence, $w_n \to 0$, i.e., $\frac{z_n - \alpha}{z_n + \alpha} \to 0$. From this we deduce that $z_n \to \alpha$. (We can argue as follows,

$$\frac{z_n - \alpha}{z_n + \alpha} = \frac{z_n - \alpha}{(z_n - \alpha) + 2\alpha} = \frac{1}{1 + \frac{2\alpha}{z_n - \alpha}} \to 0 \Rightarrow z_n - \alpha \to 0.$$