A stable and accurate algorithm for a generalized Kirchhoff-Love plate model
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Introduction Resulis I: Method of Manufactured Solutio

Kirchhoff-Love model [1]: Manufactured solution: w, (¢, z,y) = sin* (2rx) sin® (27y) cos(27t)

Results ll: Standing Waves and Nodal Line:
2. Clamped BC:

- Developed in 1888 by Love using assumptions proposed by Kirchhoff Material properties: ph =1, Ky =2, T =1,D =0.01,K; =5,7, = 0.1, = 0.1 Material properties: ph =1, Ky =2,T=1,D =0.01,K; =0,7, =0,v = 0.1, Fy = 108
- One of the most common dimensionally-reduced models of a thin linearly elastic plate Forcing term: f(t,,y) — ph 0% we + Kow, — TAw, + DA2w, + K, Owe T Aawe Nodal line plots from the solution of the eigenvalue problem using the eigs function in MATLAB:
i i i i imi ith si ificati T Ot ’ ’ ’ ot ot
Ar_1a|yt|cal solutions are available only to a limited number of cases with simple specifications [2] Initial conditions: w(0,z, y) = 0. (0, z,y) = 0 121.7183 143.655 78.3255 99.8187
Chladni’s patterns [3] Square Plate: Simulations using LF+AM2
- Show the nodal lines, where no vertical displacements occurred, of the different natural modes of vibration 1 1 a0t a0 10
- Natural mode: a pattern of motion in which all parts of the system move sinusoidally with the same frequency os | . T s | | b
and with a fixed phase relation o | o6 | o6 | | | , 10
- Plate resonates at the natural frequencies T o o s T, - | - ] \ F
Formulation i ) i ) o 02 o4 o5 o3 2 04 05 0 Contour plots of the simulations using NB:
Kirchhoff-Love theory’s assumptions Numerical solution Error (Clamped BC) Error (Simply supported BC) Error (Free BC) . o2
e The plate is thin g " .
e The displacements and rotations are small 10%" 100" > 100} ) o o
e Transverse shear strains are neglected 0.1 0.1
e The transverse normal stress is negligible compared to the other stress components gm-z- gmz gmz 0.05 0.05 et
Govermng EquatlonS: phw(t, L, y) — _Kw(ta 2 y) o Bw(tv L, y) + f(t7 Ly y) o —gnd ordterd( | —gnd ordterd( | zgnd Orfterd( ) 0\ 0.05 01 015 02 025 % o005 01 015 02 o025
Operators Description Parameters Description 1041 o Clamped (1) |1 -l oG e ol Pt ameri | x x x x
Time-invariant, symmetric A Constant thickness - | geflea () - | eieeln) - el Frequency 121.7183 Frequency 143.655 Frequency 79.0282 Frequency 100.5374
K=Kyl —-TV?+ DV* , _ 4 : 102 107! 102 107! 102 107! Lo Lo
differential operator P Density grid size grid size grid size Free vibration Forced vibration
B=K;I-T,V? Damping operator Ko Linear stiffness coefficient LELAM2 AB2+AM2 NB 3. Free BC:
o2 _ 0? N 0? L aplacian operator Tension coefficient Material properties (Aluminum): p = 2700, h = 0.001, Ky = 0,7 =0,FE =69, K; = 0.1,T, = 5,v = 0.33, F, = 108
88522 8y2a4 Bending stiffness Annular Plate: Simulations using NB The center of the plate is clamped.
Vi= — +2 Biharmonic operator Poisson’s ratio T : T T SEE =) <10 Experimetal results [4]:
Linear damping cosfficient .G | £,=629.8Hz £,=1022.8Hz f=2212.2Hz f10=3434.6Hz
Visco-elastic damping coefficient 08 . > é :

Boundary & Initial Conditions

0.5 05 l . \ 1
Boundary Conditions x Cox T« .

We consider the following three common types of physical boundary conditions for a plate: Numerical solution Error (Clamped BC) Error (Simply supported BC) Error (Free BC)

e Clamped: w(t, x,y) =0,
10° - 1 100 - 1 100} , , , ,
92w 02w Simulated results using NB (forced vibration):
e Simply Supported: w(t, x =0 —D| —+v—— | (t,x — . it (=050 u (6=0.50)
ply Supp (t,z,y) =0, 52 TV ga | (HT,Y) - - - 025 g 2 S T—
£1072¢ : =102 1 £ 1072} - 0.2
(9211) a 8211] 82”(1} ) / 5 / o 0.2 o - ~ 15
o Free: +v atQ <t’ L y) - O’ _Dan 8”2 + (2 o V) 8t2 (t7 Ly y) =0 —2nd order —2nd order —2nd order 0.15 015 ;.5 =
-8 Clamped (u) —e-Clamped (u) - Clamped (u) - - .
.. e . e . . . 1074} -o—-Supported (u) | 1074+ —-o—-Supported (u)| ] 1074} -6—Supported (u) | 0.1 04 .
Initial Conditions: w(0,z,y) = a(z,y), w(0,x,y) = B(x,y), for given functions a(z,y) and G(z,y) o-Free () o e - o [eFre(w) | > o
1072 10" 1072 10" 1072 107" . — 15
grid size grid size grid size N \ - ] . 2 R 1 " .
] 0 005 01 015 02 025 0 005 01 015 02 025 0 005 01 015 02 025 0 005 01 015 02 025
Numerical Method LF+AM2 AB2+AM2 NB % % : x

Frequency f1 = 560.5412 Frequency fo = 912.9099 Frequency fg = 2037.2532 Frequency fi10 = 3159.832

Centered finite difference approximation for spatial discretization _ :
For time integration Results ll: Standing Waves and Nodal Line:

e Explicit predictor-corrector time-stepping method: e Free vibration: f(¢,z,y) =0, w(0,z,y)=¢(z,y), w(0,z,y)=0 Conclusion
Predictor: Leapfrog (LF) or Adams-Bashforth (AB2); Corrector: Adams-Moulton (AM2) e Forced vibration: f(t,x,y) = Fj cos(Qt)(S(x_wO,y_yo), w(0,z,y) =0, w(0,z,y)=0

e Implicit Newmark-Beta (NB) method: for 5 = 1/4 and v = 1/2, the NB method is second order accurate and (20, Y0) : center of the plate
unconditionally stable

e A sequence of benchmark problems with increasing complexity are con-
sidered to demonstrate the numerical properties of the algorithm
(Y and ¢(z,y) : eigenvalue and eigenvector of the eigenvalue problem K¢ (x,y) = Ap(z,y) e Mesh refinement study, with the method of manufactured solutions, ver-
1. Simply Supported BC ifies the stability, accuracy and second order convergence
Time-step Determination Material properties: ph =1, Ko =0,7=0,D =2, K; =0,71 =0,v =0.1 o NB is more time-efficient than the explicit predictor-corrector schemes
LA . mmxT . nmy (m2 n2> Dr? e Nodal lines, natural mode shapes and frequencies obtained through ’ .

: . : . Rectangular) Eigenvector: ¢(x,y) = sin sin ——, eigenvalue: fn, = | — + —= —. m,n=1,2,... o _ H———

method
Nodal line plots from the solution of the eigenvalue problem using the eigs function in MATLAB: [4]
% n ] u
‘ ()| | 2.1736 3.4451 6.25 42.25 Future Directions

| " <
e Extend current research to more complicated geometries

[pprovmaten where R(z), 3(z) are real and imaginary parts of z, respectively. e Couple the developed plate solver with an existing fluid solver to simulate more interesting fluid-structure inter-
—LF+AM2

| Stable time step: At = Co y action (FSI) problems, such as blood flow in an artery
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' a b
| References

where C¢ < 1 is the Courant-Friedrichs-Lewy (CFL) number and . : : 0
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a=175b=12mn=1.5 For NB: C¢ can be taken as big as 100 '
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