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Motivation

a). Ackleh et al.(2019): Persistence and stability analysis of discrete‐time
predator‐prey models: a study of population and evolutionary dynamics.

b). Previous Project: Prey reproduction is continuous, meaning it occurs at
each time unit, and the prey evolves in response to toxicants.

c). Current Project: What happens when prey reproduction is periodic,
meaning it occurs at alternating time units, and prey evolves in response
to toxicants?

d). Example: Green Treefrogs, Hyla cinerea ‐ small, arboreal amphibian species
with breeding season ≈ 6 months. (2 periodic birth)

Source: https://userweb.ucs.louisiana.edu/ asa5773/ubm/gallery‐2006.html

The periodic model and its composite map

The periodic model:
n(t + 1) = R(t, n(t), p(t), v) n(t)

∣∣
v=u(t),

p(t + 1) = [spp(t) + κϕ̂(t, n(t), v)n(t)f (p(t), v)p(t)]
∣∣
v=u(t),

u(t + 1) = u(t) + ν∂v ln[R(t, n(t), p(t), v)]
∣∣
v=u(t).

Time transformation: τ + i = 2(t + i); i ≥ 0 =⇒ τ = 2t, τ + 1 = 2t + 2, . . .

The composite map:
n(τ + 1) = R̂(n(τ ), p(τ ), v)n(τ )

∣∣
v=u(τ ),

p(τ + 1) = [spx + κnABf (x, y)x]
∣∣
v=u(τ ),

u(τ + 1) = u(τ ) + ν∂v ln R̂(n(τ ), p(τ ), v)
∣∣
v=u(τ ), where

R̂(n, p, u) := ABC, A(n, u) := s2
n + snb̂(n, u)[1 − ϵ(u)], B(p, u) := 1 − f (p, u)p,

C(n, p, u) := 1 − f (x, y)x, x(n, p, u) := p(2t + 1) = spp + (κ/sn)Anfp,

y(n, p, u) := u(2t + 1) = u + ν∂u ln [(AB/sn)]
The composite model is much more complex than the model with continuous
(prey) reproduction.

The growth rates, and toxicant thresholds

Inherent growth rates: rP
0 := s2

n + snb(0)[1 − ϵ(0)], r̃P
0 := s2

n + snb(ũ)[1 − ϵ(ũ)].

Invasion growth rates: rP
i := s2

p + κ

(
sp

sn
+ sp + κn̄

sn
f (0, 0)

)
n̄f (0, 0),

r̃P
i := s2

p + κ

(
sp

sn
+ sp + κñ

sn
f (0, ũ)

)
ñf (0, ũ).

Toxicant thresholds: ϵc1 = b1

b1 + ϵ1
, ϵc2, ϵc3.

Theoretical results from the composite model

a). The extinction equilibrium (0, 0, 0) is locally asymptotically stable if
rP

0 < 1, ϵ0 < ϵc1 and 0 < ν < sn+b0(1−ϵ0)
b0{b1(1−ϵ0)−ϵ0ϵ1}, and unstable otherwise.

b). The predator‐free equilibrium (n̄, 0, 0) exists if rP
0 > 1 and is locally

asymptotically stable if ϵ0 < ϵc1, rP
i < 1 and 0 < ν < sn+b0b̂(n̄)(1−ϵ0)

b0b̂(n̄){b1(1−ϵ0)−ϵ0ϵ1}
.

c). The equilibrium (n∗, p∗, 0) with n∗, p∗ > 0, exists if rP
0 , rP

i > 1. Moreover, it is
locally asymptotically stable if ϵ0 < ϵc2, and 0 < ν < ν∗.

d). The equilibrium (0, 0, ũ) exists if ϵ0 > ϵc1, and is locally asymptotically stable if
r̃P

0 < 1, and − 2 < ν∂2(ln R̂)
∂v2 |(0,0,ũ) < 0.

e). The equilibrium (ñ, 0, ũ) exists if ϵ0 > ϵc1, and r̃P
0 > 1, and is locally

asymptotically stable if r̃P
i < 1, and − 2 < ν∂2(ln R̂)

∂v2 |(ñ,0,ũ) < 0.

f). If ϵ0 > ϵc3, r̃P
0 > 1, and r̃P

i > 1, then the evolutionary model is persistent, that
is, ∃ ϵ > 0 such that lim infτ→∞ min(n(τ ), p(τ ), u(τ )) > ϵ for any initial
condition n(0), p(0), u(0) > 0.
These results suggest that equilibrium stability, long‐term persistence, and
coexistence depend on specific parameter choices.

Numerical results

a). Prey dynamics with evolution in the absence of predators

b). Prey and predator dynamics without evolution

c). Prey and predator dynamics with evolution

d). Evolutionary dynamics for case c) e). Species with and without evolution

Summary of the dynamics of the periodic model

Steady States Existence Conditions LAS Conditions

Extinction Equilibrium, u = 0 ‐ ‐ rP
0 < 1, ϵ0 < ϵc1, 0 < ν < sn+b0(1−ϵ0)

b0{b1(1−ϵ0)−ϵ0ϵ1}

Predator‐free 2‐cycle, u = 0 rP
0 > 1 rP

i < 1, ϵ0 < ϵc1, 0 < ν < sn+b0b̂(n̄)(1−ϵ0)
b0b̂(n̄){b1(1−ϵ0)−ϵ0ϵ1}

Predator‐prey 2‐cycle, u = 0 rP
0 > 1, rP

i > 1 ϵ0 < ϵc2, and ∃ ν∗ > 0 for all 0 < ν < ν∗

Extinction Equilibrium, u > 0 ϵ0 > ϵc1 r̃P
0 < 1, −2 < ν ∂2(ln R̂)

∂v2

∣∣
(0,0,ũ) < 0

Predator‐free 2‐cycle, u > 0 ϵ0 > ϵc1, r̃P
0 > 1 r̃P

i < 1, −2 < ν ∂2(ln R̂)
∂v2

∣∣
(ñ,0,ũ) < 0

Predator‐prey 2‐cycle, u > 0 ϵ0 > ϵc3, r̃P
0 > 1, r̃P

i > 1 ∃ ν̂ > 0 for all 0 < ν < ν̂

Table 1. Summary of dynamics; seasonal model. LAS abbreviates Locally Asymptotically Stable

Concluding remarks

a). Seasonality is always deleterious for a single species in a toxic environment, in
agreement with the Cushing‐Henson conjectures.

b). While seasonality is advantageous at low and intermediate toxicant levels, it
can be deleterious at high levels when prey do not evolve.

c). When predators are present, the evolving prey follows a pattern similar to the
case of nonevolving prey but with different dynamics; namely the prey is able
to benefit more from seasonal than continuous reproduction by evolving its
trait value.

d). Whether the prey is evolving or not, seasonality is always detrimental to the
predator.

e). The inclusion of evolution helps both species maintain a higher density.

Future work

a). The impact of evolution on either predator or prey when predator or prey is
structured.

b). The impact of seasonality on frequency‐dependent evolution in a
predator‐prey system.
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