

Modeling Predator-Prey Systems: Seasonal Breeding and Prey Evolution

Department of Mathematics, University of Louisiana at Lafayette,

Motivation

- a). Ackleh et al.(2019): Persistence and stability analysis of discrete-time predator-prey models: a study of population and evolutionary dynamics.
- **Previous Project:** Prey reproduction is continuous, meaning it occurs at each time unit, and the prey evolves in response to toxicants.
- c). Current Project: What happens when prey reproduction is periodic, meaning it occurs at alternating time units, and prey evolves in response to toxicants?
- The equilibrium $(0, 0, \tilde{u})$ exists if $\epsilon_0 > \epsilon_{c_1}$, and is locally asymptotically stable if d). Example: Green Treefrogs, Hyla cinerea - small, arboreal amphibian species $\tilde{r}_0^P < 1$, and $-2 < \nu \frac{\partial^2 (\ln \hat{R})}{\partial v^2}|_{(0,0,\tilde{u})} < 0.$ with breeding season \approx 6 months. (2 periodic birth)

Source: https://userweb.ucs.louisiana.edu/ asa5773/ubm/gallery-2006.html

The periodic model and its composite map

The periodic model:

$$n(t+1) = R(t, n(t), p(t), v) n(t) \big|_{v=u(t)},$$

$$p(t+1) = [s_p p(t) + \kappa \hat{\phi}(t, n(t), v) n(t) f(p(t), v) p(t)]$$

 $u(t+1) = u(t) + \nu \partial_v \ln[R(t, n(t), p(t), v)]\Big|_{v=u(t)}.$

Time transformation: $\tau + i = 2(t + i); \quad i \ge 0 \implies \tau = 2t, \tau + 1 = 2t + 2, \ldots$ The composite map:

$$\begin{split} n(\tau+1) &= \hat{R}(n(\tau), p(\tau), v) n(\tau) \big|_{v=u(\tau)}, \\ p(\tau+1) &= \left[s_p x + \kappa n ABf(x, y) x \right] \big|_{v=u(\tau)}, \\ u(\tau+1) &= u(\tau) + \nu \partial_v \ln \hat{R}(n(\tau), p(\tau), v) \big|_{v=u(\tau)}, \end{split}$$

 $\hat{R}(n, p, u) := ABC, \ A(n, u) := s_n^2 + s_n \hat{b}(n, u) [1 - \epsilon(u)], \ B(p, u) := 1 - f(p, u)p,$ $C(n, p, u) := 1 - f(x, y)x, \ x(n, p, u) := p(2t + 1) = s_p p + (\kappa/s_n) Anfp,$ $y(n, p, u) := u(2t + 1) = u + \nu \partial_u \ln [(AB/s_n)]$

The composite model is much more complex than the model with continuous (prey) reproduction.

The growth rates, and toxicant thresholds

Inherent growth rates: $r_0^P := s_n^2 + s_n b(0) [1 - \epsilon(0)], \quad \tilde{r}_0^P := s_n^2 + s_n b(\tilde{u}) [1 - \epsilon(\tilde{u})].$

Invasion growth rates:
$$r_i^P := s_p^2 + \kappa \left(\frac{s_p}{s_n} + s_p + \frac{\kappa \bar{n}}{s_n}f(0,0)\right) \bar{n}$$

 $\tilde{r}_i^P := s_p^2 + \kappa \left(\frac{s_p}{s_n} + s_p + \frac{\kappa \tilde{n}}{s_n}f(0,\tilde{u})\right) \tilde{n}f(0,\tilde{u}).$

Toxicant thresholds: $\epsilon_{c_1} = \frac{b_1}{b_1 + \epsilon_1}, \quad \epsilon_{c_2}, \quad \epsilon_{c_3}.$

Azmy S. Ackleh,

Narendra Pant^{*},

* Email: narendra.pant1@louisiana.edu,

Theoretical results from the composite model

-)] $|_{v=u(t)}$,
- where

- if(0,0),

- a). The extinction equilibrium (0, 0, 0) is locally asymptotically stable if $r_0^P < 1, \epsilon_0 < \epsilon_{c_1}$ and $0 < \nu < \frac{s_n + b_0(1 - \epsilon_0)}{b_0 \{b_1(1 - \epsilon_0) - \epsilon_0 \epsilon_1\}}$, and unstable otherwise.
- asymptotically stable if $\epsilon_0 < \epsilon_{c_1}$, $r_i^P < 1$ and $0 < \nu < \frac{s_n + b_0 \hat{b}(\bar{n})(1-\epsilon_0)}{b_0 \hat{b}(\bar{n})\{b_1(1-\epsilon_0)-\epsilon_0\epsilon_1\}}$. locally asymptotically stable if $\epsilon_0 < \epsilon_{c_2}$, and $0 < \nu < \nu^*$.
- b). The predator-free equilibrium $(\bar{n}, 0, 0)$ exists if $r_0^P > 1$ and is locally c). The equilibrium $(n^*, p^*, 0)$ with $n^*, p^* > 0$, exists if $r_0^P, r_i^P > 1$. Moreover, it is
- e). The equilibrium $(\tilde{n}, 0, \tilde{u})$ exists if $\epsilon_0 > \epsilon_{c_1}$, and $\tilde{r}_0^P > 1$, and is locally asymptotically stable if $\tilde{r}_i^P < 1$, and $-2 < \nu \frac{\partial^2 (\ln \hat{R})}{\partial v^2}|_{(\tilde{n},0,\tilde{u})} < 0$. f). If $\epsilon_0 > \epsilon_{c_3}$, $\tilde{r}_0^P > 1$, and $\tilde{r}_i^P > 1$, then the evolutionary model is persistent, that is, $\exists \epsilon > 0$ such that $\liminf_{\tau \to \infty} \min(n(\tau), p(\tau), u(\tau)) > \epsilon$ for any initial
- condition n(0), p(0), u(0) > 0. These results suggest that equilibrium stability, long-term persistence, and coexistence depend on specific parameter choices.

Numerical results

c). Prey and predator dynamics with evolution

Evolutionary dynamics for case c) - - continuous, $\epsilon_0^c = 0.54545$ ₩ 0.6

Amy Veprauskas.

Math for All, Tulane University, Apr 5, 2025.

Species with and without evolution

Summary of the dynamics of the periodic model

	1	T
Steady States	Existence Conditions	LAS Conditions
Extinction Equilibrium, $u = 0$		$r_0^P < 1, \epsilon_0 < \epsilon_{c_1}, 0 < \nu < \frac{s_n + b_0(1 - \epsilon_0)}{b_0\{b_1(1 - \epsilon_0) - \epsilon_0\epsilon_1\}}$
Predator-free 2-cycle, $u = 0$	$r_0^P > 1$	$r_i^P < 1, \epsilon_0 < \epsilon_{c_1}, 0 < \nu < \frac{s_n + b_0 \hat{b}(\bar{n})(1 - \epsilon_0)}{b_0 \hat{b}(\bar{n}) \{b_1(1 - \epsilon_0) - \epsilon_0 \epsilon_1\}}$
Predator-prey 2-cycle, $u = 0$	$r_0^P > 1, r_i^P > 1$	$\epsilon_0 < \epsilon_{c_2}$, and $\exists \nu^* > 0$ for all $0 < \nu < \nu^*$
Extinction Equilibrium, $u > 0$	$\epsilon_0 > \epsilon_{c_1}$	$\tilde{r}_0^P < 1, -2 < \nu \frac{\partial^2 (\ln \hat{R})}{\partial v^2} \big _{(0,0,\tilde{u})} < 0$
Predator-free 2-cycle, $u > 0$	$\epsilon_0 > \epsilon_{c_1}, \tilde{r}_0^P > 1$	$\tilde{r}_i^P < 1, -2 < \nu \frac{\partial^2 (\ln \hat{R})}{\partial v^2} \big _{(\tilde{n}, 0, \tilde{u})} < 0$
Predator-prey 2-cycle, $u > 0$	$\epsilon_0 > \epsilon_{c_3}, \tilde{r}_0^P > 1, \tilde{r}_i^P > 1$	$\exists \ \hat{\nu} > 0 \text{ for all } 0 < \nu < \hat{\nu}$

- a). Seasonality is always deleterious for a single species in a toxic environment, in agreement with the Cushing-Henson conjectures.
- b). While seasonality is advantageous at low and intermediate toxicant levels, it can be deleterious at high levels when prey do not evolve.
- c). When predators are present, the evolving prey follows a pattern similar to the case of nonevolving prey but with different dynamics; namely the prey is able to benefit more from seasonal than continuous reproduction by evolving its trait value.
- d). Whether the prey is evolving or not, seasonality is always detrimental to the predator.
- e). The inclusion of evolution helps both species maintain a higher density.

Future work

- a). The impact of evolution on either predator or prey when predator or prey is structured.
- b). The impact of seasonality on frequency-dependent evolution in a predator-prey system.

Raczkowski for helping me prepare the (poster) presentation.

- [1] Ackleh, A. S., Hossain, M. I., Veprauskas, A., & Zhang, A. (2019). Persistence and stability analysis of discrete-time predator-prey models: a study of population and evolutionary dynamics. Journal of Difference Equations and Applications
- A.S. Ackleh, N. Pant and A. Veprauskas, A Discrete-Time Predator-Prey Model with Seasonal Breeding, International Conference on Difference Equations and Applications, Springer, 2023, pp. 233–257.

Table 1. Summary of dynamics; seasonal model. LAS abbreviates Locally Asymptotically Stable

Concluding remarks

Acknowledgement

Thank you, "Math for All organizers", for this great opportunity to present my work. I would also like to thank Dr. Azmy S. Ackleh and Dr. Amy Veprauskas for their support and guidance in my research. Additionally, I thank Dr. Ursula A. Trigos

References