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Motivation

Environmental toxicity is becoming a global concern for the biological
population.
Toxicants, including pesticides, heavy metals, and industrial chemicals,
disrupt the natural dynamics of ecosystems by interfering with species’
survival, reproduction, and behavior.
Predator‐prey systems are highly vulnerable to such disruptions. This
research focuses on developing and analyzing evolutionary mathematical
models to understand the impact of toxicants on the dynamics of a
discrete‐time predator‐prey system.
In 2019, Azmy Ackleh et al. developed and studied the evolutionary
responses of prey on a discrete‐time predator‐prey system.
This project extends the case of predator evolution by considering three
different toxicant effects.
(i) Lethal effects, where the toxicant directly influences the predator’s survival in a

trait‐dependent manner.
(ii) Sublethal effects, where the toxicant impacts the fecundity of the predator.
(iii) Mixed‐effects, where the toxicant impacts both the predator’s survival and fecundity.

The Models

We formulate the models as follows:
Lethal Effects Model

n(t + 1) = ϕ(n(t))n(t)(1 − f (p(t), v)p(t))|v=u,

p(t + 1) = s(v)(1 − ϵ(v))p(t) + b(n(t))n(t)f (p(t), v)p(t)|v=u,

u(t + 1) = u(t) + ν∂v ln[R(n(t), p(t), v)]|v=u.

(1)

Sublethal Effects Model

n(t + 1) = ϕ(n(t))n(t)(1 − f (p(t), v)p(t))|v=u,

p(t + 1) = s0p(t) + (1 − ϵ(v))b(v)b̄(n(t))n(t)f (p(t), v)p(t)|v=u,

u(t + 1) = u(t) + ν∂v ln[R(n(t), p(t), v)]|v=u.

(2)

Mixed‐Effects Model
n(t + 1) = ϕ(n(t))n(t)(1 − f (p(t), v)p(t))|v=u,

p(t + 1) = (1 − ϵ1(v))s(v)p(t) + (1 − ϵ2(v))b(v)b̄(n(t))n(t)f (p(t), v)p(t)|v=u,

u(t + 1) = u(t) + ν∂v ln[R(n(t), p(t), v)]|v=u.

(3)

For all three models, we consider n(t) and p(t) to represent the number or den‐
sity of prey and predator, respectively, and u(t) is the mean phenotypic trait for
the predator population representing toxicant resistance.
We assume the following Beverton‐Holt nonlinearities ϕ(n) and b(n) for the
above‐mentioned models:

ϕ(n) = r0

1 + mn
and b(n) = b0

1 + γn
.

In addition, we consider the following exponential trait‐dependent nonlineari‐
ties for model (1):

s(v) = s0e
−wsv

2
, ϵ(v) = ϵ0e

−wϵv
2
, and f (p, v) = c(v)

1 + pc(v)
,

where c(v) = c0e
−wcv

2
.

We also consider similar exponential nonlinearities for models (2) and (3).

Stability Results for the Lethal Effects Model

The extinction equilibrium (0, 0, 0) is globally asymptotically stable if
r0 < 1 and ϵ0 < ws

wϵ+ws
.

The predator‐free equilibrium (n̄, 0, 0), where n̄ := ϕ−1(1) exists if r0 > 1
and is locally asymptotically stable if ϵ0 < min

{
n̄b(n̄)c0wc+s0ws

(ws+wϵ)s0
, 1
}
, then the

predator‐free equilibrium (n̄, 0, 0) is globally asymptotically stable for a
sufficiently small ν.
The equilibrium (n∗, p∗, 0) with n∗, p∗ > 0 exists if r0 > 1 and
s0(1 − ϵ0) + b(n̄)n̄c0 > 1. Moreover, (n∗, p∗, 0) is locally asymptotically

stable if ϵ0 < min

{
wc

n∗b(n∗)c0
s0(1+p∗c0)2+ws

ws+wϵ
, 1

}
and ν is sufficiently small.

The extinction equilibrium (0, 0, ū) exists if ϵ0 > ws

ws+wϵ
, and is globally

asymptotically stable if r0 < 1 and ν is sufficiently small.
The predator‐free equilibrium (n̄, 0, ũ) exists if r0 > 1 and ϵ0 > n̄b(n̄)c0wc+s0ws

(ws+wϵ)s0
,

and is locally asymptotically stable if s(ũ) (1 − ϵ(ũ)) + b(n̄)n̄c(ũ) < 1 and ν
is sufficiently small.
If ϵ0 > n̄b(n̄)c0wc+s0ws

(ws+wϵ)s0
and s(ũ) (1 − ϵ(ũ)) + b(n̄)n̄c(ũ) > 1, then model (1) is

uniformly persistent, i.e., there exists an ϵ > 0 such that
min{lim inf

t→∞
n(t), lim inf

t→∞
p(t), lim inf

t→∞
u(t)} > ϵ

for any initial condition with n(0), p(0), u(0) > 0.

Here, r0 is the inherent growth rate of prey, s0(1 − ϵ0) + b(n̄)n̄c0 is the invasion
growth rate of the predator, and ϵ0 is the initial toxicant level.
We have similar theoretical results when the toxicant effects are sublethal.
However, we analyze the mixed effects case only numerically.

Comparison Between Lethal and Sublethal Effects Model

Bifurcation diagrams for the lethal model with a higher predator survival.

Bifurcation diagrams for the sublethal model with a higher predator survival.

Results for the Low Predator Survival

Bifurcation diagrams for the lethal and sublethal models.
Results for the Mixed-Effects Model

Bifurcation diagrams for the mixed effect model.

Concluding Remarks

In the non‐evolutionary scenario, when fecundity is lower, the predator
goes extinct at a lower toxicant level in the lethal case compared to the
sublethal case. In contrast, when fecundity is higher, this scenario is
reversed. Thus, lethal effects are greater when fecundity is low, but
sublethal effects become greater when fecundity is high.
While comparing the lethal and sublethal cases, the toxicant threshold
level is the same for all scenarios from where the predator starts evolving
in response to toxicants.
In all scenarios, evolution produces higher predator densities in the toxic
environment.
When the predator survival is higher, the sublethal effects produce higher
predator densities. However, the scenario is reversed when the predator
survival is low.
The mixed effects case produces qualitatively similar dynamics to the low
predator survival scenario.
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