You are here

Professor Awarded 3-year Board of Regents Grant

Top Stories

News from the Spring 2025 Commencement

The mathematics department is pleased to announce and celebrate our three BS, two MS, and four PhD Spring 2025 gradu

Read More ➝

Professor Longfei Li was recently awarded a three-year grant from Board of Regents Support Fund (BoRSF) Research Competitiveness Subprogram (RCS) with total funding of $178,131. This funding will support Professor Li's research project titled "High-Order Computational Methods for Beams and Plates with Applications to Fluid-Structure Interaction Problems." A brief description of the research can be found below.

Beam and plate theories simplify the theories of continuum mechanics for solids that are thin in thickness, and provide a means of calculating the load-carrying and deflection characteristics of thin structures. Beam/plate theories are extensively applied in many areas of engineering and applied science. When interacted with fluid, the fluid-structure interaction (FSI) problems involving deforming beams/plates add even more important applications, such as modeling airplanes, parachutes, and blood flow in elastic arteries. The corresponding development, analysis and implementation of numerical methods for these problems is a very active area of research in computational mechanics. Recent work by Li has led to the development of a new scheme for FSI problems, called the Added-Mass Partitioned (AMP) algorithm. The proposed research aims to (I) develop and analyze high-order accurate computational solid dynamics (CSD) algorithms for various beam and plate models using deforming composite grids and finite-difference discretization; (II) implement the new CSD algorithms within the open-source Overture framework; (III) verify and validate the CSD code using benchmark problems; (IV) apply the CSD code, together with the existing computational fluid dynamics (CFD) code in Overture and the AMP scheme, to solve a wide range of FSI applications of interest; and (V) collaborate with experimentalists to solve sophisticated FSI applications.

SHARE THIS |